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Studies of the collective excitation of two spatially separated electron and hole layers in
strong magnetic fields indicate that the system undergoes a phase transition when the layer

separation is larger than a critical value. Using the Hartree-Fock approximation, we find

that this transition generates a novel excitonic density wave state, which has a lower energy

than either a homogeneous exciton fluid or a double charge-density wave state. The order
parameters of the state satisfy a sum rule similar to that of a charge-density wave state in a

two-dimensional electron system. A possible connection between the new state and a recent

expaerimental result is discussed.
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I. Introduction

The nature of the ground state of the interacting two-dimensional electron system in
strong magnetic fields has been studied intensively for a number of vears. It Is now well
known that in the extreme quantum limit, at some fractional filling (v = p/q¢ > 1/9, where
q is an odd integer) of the lowest Landau level, the ground state is an incompressible Fermi
liquid, characterized by the Laughlin wave function!. For v < 1/9. it has been shown
that a triangular charge-density wave (CDW) state or Wigner lattice® is energetically more
favorable than the the Laughlin fractional quantum Hall effect (QHL) state. Recently the
properties of double-quantum well (DQW) systems, in which electrons are evenly distributed
in each well, have received muci: aviention, and the evolution of the ground state as the
well separation is increased has neen investigated both experimentally® aud theoretically ™.
The steps in the Hall conductance at odd integer values of €?/A have been observed to
disappear® when the barrier thickness is increased. These QHE states. which correspond to
the filling factor v = n 4+ 1/2 for the average electron density in each quantum well. have
been associated with the symmetric-antisymmetric (SAS) gap of the DQW. The suppression
of the SAS energy gap as the well separation is increased has been suggested as the cause of
the disappearance of these steps®.

A common feature revealed in the several previous theoretical studies*™" of DQW’s is that
as the layer separations is increased the dispersion relation of the charge density excitation
develops a local minimum at a wave vector on the order of the inverse of the magnetic length,
This minimum becomes a soft mode when the separation reaches a critical value . of the
order of the magnetic length. The system, therefore, undergoes a phase transition to a new

state, speculated to be a CDW state. In this paper we identify this transition as the one to




a novel state which we call an excitonic charge-density wave (ECDW) state. This new state
has the properties of both an excitonic state and a normal CDW state.

The generalized system we study is the two layered electron-hole system”, with one laver
containing electrons and the other containing the equal number of holes (v. = v, = v). The
system was first introduced and intensively investigated, theoretically, by Lozovik and co-
workers®. It can be realized either by the molecular epitaxy growth of the InAs— AlSb—GuSh
heterostructures? or by applying a strong electric field to the GaAs — AlGaAs DQW'si.
The layer width as well us the tunnelling between the two layers will be neglected throughout
the paper, since they are not essential in the ECOW transition. For v = 1/2, our system
is equivalent to the half-filled electron-electron DQW system studied by Fertig in Ref. 4.
At small layer separations, where the interlayer Coulomb attraction is strong, electrons and
holes pair together to form excitons. The excitonically condensed state of the electron-
hole pairs is then the preferable ground state.” It has been suggestd that the system in the
excitonic state may exhibit a superfluid of electron-hole pairs when an electric field is applied
parallel to the layers®. On the other hand, if the layer separation is much larger than the
average intralayer distance between neighboring particles two independent Laughlin states
or triangular CDW states will give the lowest energy of the system, depending on the filling
factor v. Between these two limits, that is, when the layer separation is comparable with
the intralayer particle separation, the ECDW state appears. In this novel state, both the
excitonic condensation and CDW’s exist. Furthermore the condensations of the excitons wili

occur not only at K = 0 (where K is the wave vector of excitons) but also at the wave vector
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II. Collective Excitations

We start with the general Hamiltonian of the electron-hole system in a strong magnetie

field, assuming that only the first Landau levels are occupied

H= A DPAD)P;(—9) — 86”2 500)] — pe(0) — ppn(0), (1)

t..q
where i, j=electron or hole, i is the chemical potential, Vie(q) = Vin(q) = 2x¢?/e0. and
Ven(q) = —2we’exp(—dq)/eq. L is the linear dimension of the system, and ! {= y; ITT:E

is the magnetic length. The spin degree of freedom of electrons and holes are frozen by the

magnetic field. The particle density operators 4({) in the above Hamiltonian are given by

o

= Z a}_}ax“exp[iqu ~ (q1)?/4], [
X

and
pn(@) = Y bk, bx_exp[—ig: X — (ql)*/4], (3)
X

where Xy = X +¢q,%/2, and —-L/2 < X = Z%Ej < L/2, with j being an integer. ay (ax)
and b% (bx) are the creation (annihilation) operators of the electron and hole wave functions
in the Landau gauge.

In the normal uniform excitonic phase, as a result of electron-hole interaction, electron-
hole pairs condense into a state with zero total momentum. The order parameter in this
case is just {b_xax) or (a}bfx> which is finite and equal to \/v{1 — v) for the condensed
excitonic state. In order to study the evolution of the ground state as a function of the layer
separation d, as well as the collective excitations of the system, we introduce a generalized

operator of a¥b* y,

dt(q) = Z“X+b+x explig: X — (q0)*/4], (1)




which creates an electron-hole pair with a total momentum hq.

Following Anderson’s treatment!!!? of the collestive excitations in superconductivity, we
derived a set of extended random-phase approximation (ERPA) equations for {p,. (V). {pn i)}
and (d*(4)) by linearization of the equations of motion

Zfl%ﬁ‘[p,ﬁl

with the help of the Hartree-Fock decoupling technique:

B2G0) = (@)
S0 = EA@) ~ Ea O~ — (& (@) (5)
D (D) = <2u—1>[Ech(cn—Eeh<on<J+<«n> (6)

+ vl = D{Em(0) + Eee(q) — [ (@) + Ver(@]e Y@ + (o))

Here E..(q) and E.i(q) are defined as follows:

Bl = /2 exal -S04, g

and
Ex(q) = —%/OOO dtJo(qlzt)e‘(“)zn'td, (8)
where Jo(z) and Ig(z) are the Bessel function and modified Bessel function of order zero
respectively.
Substituting (p.(q)) = pee D, (Hr(Q)) = pre~ ™Dt and (d*(q)) = d*e~*19 into these
coupled ERPA equations, w.'e obtain the dispersion relation of the collective modes in the

excitonic state!?,

wi§) = (20 = 1)*[Ea(g) — Ean(0)]? ()

i e} /2
- 41/(1 - U)[th((ﬂ - Ewh )}{Fch + Ece(d) - W[‘/ﬁ,((ﬂ 4 ""rh((ﬂ]“' (g /~}
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We would like to remind reader that the self-exchange encrgy correction of electrons or holes.
as well as the ladder diagram corrections have been properly included in the ERPA equations
(5) and (6), consequently in the excitation energy spectrum w(q).

At v = 1/2, the dispersion relation of Eq. (9) is exactly the same as that obtained by
Fertig? for a half-filled electron-electron DQW, which might be experted from the electron-
hole symmetry. In Fig. 1 we plot w?*(q) versus ¢ at v = 0.45 for several values of the layer
separation d. As has been noticed by several workers*~® in the case of the half-filled electron-
electron DQW'’s, w?(§) of Eq. (9) becomes negative at ql ~ 1.3 when the layer separatios &
is increased beyond a critical value d.(v). A plot of d. as a function of » is shown in Fig. 2;
it defines the phase boundary between the uniform excitonic state and the new state (which
we call the ECDW state). Also »lotted in Fig. 2 are the values of g, at which w?(q) first

goes to negative, i.e. w?(q.) l4=g.= 0. Except for a very small filling, the critical value g.{ is

insensitive to the filling factor v and is approximately equal to 1.3.
III. ECDW Ground State

The negative values of w?(q) for d > d. indicate the existence of static CDW distortions
in the new ground state of the system. However, because of the coupling of (5.()), {5x(7)),
and (d*(q)) in the ERPA equations mentioned above, the values of (d+(Q)) at the wave
vectors of the CDW’s may also be finite and time independent. We therefore define the

order parameters of the ECDW state

Boow(@) = L@ e DL
= @ e 2L (10)
and
8:,(0) = T @ el 9L, ()




where Acpw(0) = v, and {(5} are the wave vectors of the ECDW. In the Hartree-Fock (H17)
approximation the Hamiltonian of Eq. (1) is decoupled to

H = S {Ucow(Q)Acow(-Q) e ak, ax_ +e %% by ) (1
X.Q

<

—Ucr(é){AQI(Q)C—iQIXa-’(+ box_ + HC]} — p1pe(0) rpw(0)

Here Xi = X £ Q,1%/2, Ucpw(Q) is given by

= 2d 1 . ~ 2 -
Uoow(Q) = 7650+ g lVeel @) + Vil @le™ @21 = b50) = (@), (13)

and Uex(é) is equal to E.,(Q) defined in Eq. (8).

The Hartree-Fock Hamiltonian (12) can be diagonalized by a series of unitary transfor-
mations. In this paper we consider only the simplest case, i.e., a unidirectional ECDW state
having wave vectors {@} = nQoZ, wheren =0, £1, £2, ---. ¢y is the fundmentai periodicity

of the ECDW. The Hamiltonian then reduces to,

H = Y {[Ecow(X) — ul(akax + bbx)
X

+Ee(X)(axb-x + b ya})} + const (14)
where
Ecpw(X) = Y Ucpw(nQo)Acpw(nQo) cos(nQoX), (15)
and
ECI(X)‘z — > Uex(nQo)Aez(nQo) cos(nQo X ). (16)

We have assumed that both Acpw and A, are real quantities. & of Eq. (14) is diagonalized
by a Bogolyubov transformation,
ayxy = uxafx +”X/3tx

by = uxfx —vxox,




with

uy = Ll +¢&x/Ex) (1%)

vk = 31 = &x/Ex),

where éx = Eepw (X ) —p and Ex = \/{ECDW(X) — u]? + E2{X}). The Hamiltonian of the

system now becomes,

H = Z(—Exa}ax + ExB%EBx) + const. (19}
X

At the zero temperature only the a states are occupied. The order parameters of the

ECDW ground state are, then, found to be given by:

1/t Ecx(rm/QO) O3
FA. = = d e : (20}
(nQs) 5 /0 ICOS(nWm)\ﬁECDw(WI/Qo) T L B 00
and
1 Ecpw{rz/Qo) — 1 \
Acpw(nQq) = 5 '[) dz cos(nrz) {1 - \/[Ecpw(ﬂ'l?/Qo) o T EL a0 : (21)

Eqgs. (15), (16), (20) and (21) are a set of self-consistent equations. To find the ground
state of the system for given values of v and d, we first assume some value for Qq, solve
Eqs. (15), (16), (20) and (21) for Acpw(nQa), Acr{nQo) and u, and then minimize the
expectation value Enp(Qo,d, v) of the Hartree-Fock Hamiltonian (12) with respect to Q.
Eug 1s given by

L?.

ox 2 Y Wepw(nQa) | Acpw(nQo) I +Ues(nQo) | Aun(nQo) Pl (22)

n

Enr(Qo,d,v) =

Since there are infinite number of order parameters, we introduce a cut-off n, and set
Acpw(nQo) and A..(nQo) to zero for | n [> n.. In general, for given values of v and d,
Eqs. (15), (16), (20) and (21) have a number of solutions corresponding to different kinds

of states. Among them three solutions are of particular interesting: the uniform excitonic




state (A (0) # 0, Aepw(n@a) = Aur(nQo) = 0 for | n |# 0), the double CDW state

(Aepw(nQo) # 0, Acx(nQo) = 0), and the ECDW state (Acpw(n@Qy) # 0, A (nQy) # 0).
The self-consistent calculation has been carried out for n. = 8 at several different values of
the filling factor. In Fig. 3 the energy per electron-hoie pair of these three states is shown as
a function of the layer separation for v = 0.23. The solution for the ECDW state exists only
when the layer separation is larger than some critical value, and it asvmptotically approaches
the solution for the double CDW state as the separation increases. For d > d., the ECDW
state is energetically more favorable than both the uniform excitonic state and the double
CDW state. The first three order parameters of the ground state A, (0), Acpw (Qo) and
Az(Qo) versus d are plotted in Fig. 4 for v = 0.23. Starting from d = d., as A,.-(0) drops
rapidly, A.-(Qo) first increases, then decreases, and exhibits a maximum at d ~ 1.9{. From
Eqs. (20) and (21) it can be easily shown that the order parameters of the ECDW state

satisfy the sum rule

2l Aeow(@) [P+ (@) Pl = », ¢

Q
which is similar to that for a two-dimensional CDW state.!* More interesting is that the

S
(M)
e

cuitical layer separctinn d; for the DODW statc and the corresponding wave vector (g,
obtained from Egs. (15), (16) and (20)~(22), are exactly the same (within 0.1%) as those
values given in Fig. 1. At v = 0.23, for example, we found that d. = 1.34 and the
corresponding Q¢! = 1.31. We thus identify the phase transition resuiting from ile soft
mode of the collective excitations in the uniform excitonic state as the transition leading to
an ECDW state, most likely a triangular ECDW state. We believe this is also the phase
transition suggested in the works by Fertig!, Brey®, and MacDonald et.al.®>. Since in the
new state the ECDW can be pinned by the impurties in the quantum wells, one should no

longer expect the observation of the quantum Hall effects in the system, as the experimental




results of Ref. tindieated,
IV. Conclusions

We have found a novel ground state of the electron-hole DQW's under strong masnetic
fields, in which an excitonic condensation and crystallization coexist. The transition to such
a state when the layer separation is of the order of the magnetic length is consistent with
the softening of the collective modes in the uniform excitonic state. Our theory diseribies
the ground state of the system continuously, from an excitonic state at oue end (d=05 1o 4
double charge-density wave state at another (d — oo). An ECDW state can be viewed 4y a
mixture of the two limit cases, however the transition from a uniform excitonic state to the
corresponding ECDW state is well defined. The Hamiltonian (12) and the sum rule of 1.
(23) are valid for all values of d, consequently, for all of the three states.

The numerical calculation of the excitation spectrum, by Chakraborty and Pietilainen',
for a one-half filling electron-electron double layer system at d ~ 2.00 indicates that the in-
terlayer Coulomb inteiaction stablizes a 'unique ground state” and opens a gap in the energy
spectrum. [t 1s very possible that this unique state is just an ECDW state we introduced
here. However a definite conclusion about the connection between them can not be made
before the collective excitations of the ECDW state is investigated. A study of these excita-
tions via an extended random phase approximation similar to the one we nsed in Sec. 11 15
currently under way. In this paper we calculated the energy of a unidirectional ECDW state
as a function of the iayer separation. A more interesting problem would be the comparision
of the ground state energy between a triangular ECDW and a triangular double CDHW. The
diagonalization of the Hamiltonian (12) for a triangular ECDW state has been carried out,

and will be published elsewhere.
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Figure Captions

Fig. 1. The collective charge excitation spectrum of a spatailly separated election-hole

system at v = 0.45. The layer separation d is in the unit of the magnetic leneth (L and wid)
v for) ~ £

is in e?/el.

Fig. 2. The critical layer separation d, (solid line) and the corresponding wave vector 4.

(dashed line) as a function of the filling factor v

Fig. 3. Energy per electron-hole pair in three different states at v = 0.23 versus the laver
separation ; e®’dv/el* is the direct Coulomb interaction energy of the system. The vertical

coordinates are in units of e?/el.

Fig. 4. Vanations of the first three order parameters in the ECDW state at v = 0.23 as a

function of the layer separation.
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